AMERICAN UNIVERSITY OF BEIRUT ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT EECE 340
 Homework III - Laplace Transform

Problem 1

The signal $\mathrm{x}_{1}(\mathrm{t})$, shown below, is the input of an LTI system whose impulse response $y_{1}(t)$ is also shown below. Determine the output signal.

Problem 2

Let $h(t)$ be the impulse response of a LTI system and its Laplace transform is given by:

$$
H(s)=\frac{10(-s+1)}{(s+10)(s+1)}
$$

Find the differential equation describing the system.

Problem 3

A causal LTI system has the transfer function $\mathrm{F}(\mathrm{s})=\frac{5}{\mathrm{~s}(\mathrm{~s}+2)}$. Another causal system $G(s)$ is constructed by taking the first derivative of the output of $F(s)$, as shown in the figure below.

When the input to the system $\mathrm{G}(\mathrm{s})$ is chosen to be the unit step input, the corresponding output is labelled $\mathrm{w}(\mathrm{t})$. Evaluate w(0^{+}).

Problem 4

Using the Laplace transform approach to determine the convolution of the two signals shown below
$\mathrm{x}(\mathrm{t})$

Problem 5

Let the pair ($\mathrm{x}(),. \mathrm{y}($.$)) denote the \mathrm{I} / \mathrm{O}$ pair of a linear system be given by the following equation

$$
y(t)=\int_{-\infty}^{t} x(\tau) d \tau+\int_{-\infty}^{\infty} e^{(t-\tau)} x(\tau) d \tau \quad-\infty<t<\infty
$$

a. Find the impulse response of the system
b. Find the output when the input is a unit step signal.

Problem 6

Consider an LTI system whose response to the input $x(t)=\left[e^{-t}+e^{-3 t}\right] u(t)$ is $y(t)=\left[2 e^{-t}-2 e^{-4 t}\right] u(t)$.
a. Determine the systems' impulse response
b. Find the differential equation relating the input and the output of the system

Problem 7

Consider the signal shown below.

a. Draw the derivate of $x(t)$.
b. Determine the Laplace transform of $\mathrm{x}(\mathrm{t})$.

Problem 8

Consider the signal $\mathrm{y}(\mathrm{t})$ shown below
a. Write $\mathrm{y}(\mathrm{t})$ is time domain

b. Determine the Laplace transform of $y(t)$

Problem 9

For problems 7 and 8 , determine the convolution signal $\mathrm{z}(\mathrm{t})=\mathrm{x}(\mathrm{t}) * \mathrm{y}(\mathrm{t})$

Problem 10

Given

$$
\mathrm{f}(\mathrm{t})=\int_{0}^{\mathrm{t}} \mathrm{e}^{-3 \tau}(\mathrm{t}-\tau) \mathrm{e}^{-2(\mathrm{t}-\tau)} \mathrm{d} \tau, \quad \mathrm{t} \geq 0
$$

a. Find the Laplace transform of $f(t)$
b. Using $\mathrm{F}(\mathrm{s})$ and the final value theorem. Can we use the Final value theorem? Justify your answer.

Problem 11

Determine the convolution of the two signals $\mathrm{X}(\mathrm{t})$ and $\mathrm{Y}(\mathrm{t})$ shown below

Problem 12

Let $\mathrm{f}(\mathrm{t})$ be a signal, and let $\mathrm{F}(\mathrm{s})$ be its Laplace transform. Determine the Laplace transform of the signal $\mathrm{g}(\mathrm{t})$

$$
g(t)=f[a(t-b)]
$$

Where a is different than zero and b is a positive integer

Problem 13

Consider a linear time invariant system with input-output relationship given by

$$
y(t)=\int_{t-1}^{t} x(\tau) d \tau
$$

Determine the system impulse response.

Problem 14

The integral-differential equation given below represents a linear time-invariant system, where $r(t)$ denotes the input and $y(t)$ the output. Find the transfer function. It is to note that: $y(0)=0, y^{\prime}(0)=2, y^{\prime \prime}(0)-3, r(0)=4$, and $r^{\prime}(0)=-1$

$$
\frac{d^{3} y(t)}{d t^{3}}+10 \frac{d^{2} y(t)}{d t^{2}}+3 \frac{d y(t)}{d t}+y(t)+2 \int_{o}^{t} y(\tau) d \tau=\frac{d r(t)}{d t}+2 r(t)
$$

